

Unit 10: Characteristics of Congrunt an Similar Figures 2D

Congruent
Shapes:

\rightarrow the measures of the corresponding side are the same
\rightarrow isriespandily angles are prese s 9.6 .

- i- Fancieiors are the same
\rightarrow Areas are the same
\rightarrow uvlumes are the same

Similar Shapes:
L porpertronally the same
 shape, but one s smaller Lar Lar.
\rightarrow corresponding angles are the same. 50. a) The ratio of the (corresponding congruent sides all equal each other and they equal to the scale factor $\quad\{k$ the ratio of similitude?

$$
\frac{6}{3}=2=k \quad \frac{4}{2}=2=k \quad \frac{\overline{A B}}{\sqrt{2}}=k
$$

The ratio of pe rimeters of k
50 c) The ratio of the areas is equal to k^{2}

$$
\frac{A_{1}}{A_{2}}=k^{2}
$$

50 d) The varro of the volumantis envois to fr^{3}

$$
\frac{V_{1}}{V_{2}}=k^{3}
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& x=\sqrt{3^{2}+4^{2}} \\
& x=\sqrt{25} \\
& x=5
\end{aligned}
$$

The ratio of similude is $\frac{1}{3}$ Find x.

$$
\begin{array}{r}
\frac{B C}{Y x}=\frac{1}{3} \quad \frac{A C}{y z}=k \\
\frac{A B}{x z}=\frac{1}{3} \\
\frac{1}{x+2 z}=\frac{1}{3} \\
3=x z
\end{array}
$$

\longrightarrow since $k<1$ trey put $\frac{s_{\text {mall }}}{b \pi g}=k$.
to if $k>1 \rightarrow$ pat $\frac{b i g}{\sin t}=k$

- Sub in info te find other area.

$$
\begin{aligned}
& \frac{3}{x}=\left(\frac{2}{6}\right)^{2} \\
& \frac{3}{x}=\frac{4}{36} \\
& \frac{108}{4}=\frac{x \cdot 4}{4}
\end{aligned}
$$

The twa triangle are similar.

$$
\frac{\text { Area }}{\text { Area }}=k^{2} \&
$$ The ratio of the areas is 4 . Find the permieter of

Translate sentences. $\Delta x y z$.

$$
\frac{\text { Side }}{\text { Sind }}=k
$$

The $2 \Delta s$ are similar

The permieter of $\triangle A B C$ is 3 times the permitter of $\Delta X Y Z$
If $A_{\text {has }}$ is 1.80 unit find Axyz.

$$
\begin{array}{ll}
\frac{1 B O}{A_{2}}=k^{2} \\
\frac{180}{A_{2}} & =3 \\
\frac{180}{A_{2}}=9 \\
\frac{p_{2}}{9} & \frac{180}{p_{2}}=3=k
\end{array}
$$

The ratio of the areas is equal te $\frac{2}{1}$
If the volume of the small right ${ }^{1}$ prism is 36 ont ${ }^{3}$

find the volumes of the big one.

Similar right

$$
\begin{aligned}
& \frac{A_{2}}{A_{1}}=2 \\
& \sqrt{\alpha}=\sqrt{1} \cdot
\end{aligned}
$$

$$
\begin{aligned}
& k=\sqrt{2} \\
& \frac{V_{2}}{V_{1}}=k^{3} \quad \frac{A_{1}}{A}
\end{aligned}=k^{2}=k^{3}
$$

Sharon bought twa birthday hats for herself and her boyfrrenal. The smaller
$X A B$ $X A B$ hat fits perfectly into big hat.

$$
V_{X A B}=70 \text { unit }^{3}
$$

iA. is midpoint of $\overline{x y}$
Fire firs $V_{x y z}$.

