Unit 13: Comparative Analysis of Functional Situations

- graph / label axis
for example: weight is a function of distance distance is a function of speed:
- translate sentences
translate sentences into equation
create equation based on contextydinguam
- be strategic in where
you place the x / y axis!

$$
\begin{aligned}
& \left\{\begin{array}{l}
\rightarrow 2 \text { unknowns } \rightarrow 2 \text { equations } \\
\rightarrow 3 \text { unknowns } B \text { equation }
\end{array}\right. \\
& \square \text { move ore eq int mon }
\end{aligned}
$$

Amman throws a ball into the air while standing on a ledge.
If the trajectory of the ball is described by
 where high was the ball distance (m)
when it was first
it frown?

Hor far does the ball travel?

$$
\begin{aligned}
& f(0)=-2(0)^{2}+\{(0)+1 \text { distance: }(w) \quad \because(21-3) \\
& f(0)=1 \quad 0=-2 x^{2}+2 x+1 \\
& x=\frac{-b \pm \sqrt{1}}{2 a} \\
& a=-2 \\
& b=2 \\
& c=1 \\
& x_{1}=1.366 w=1020 x_{1}^{2,4 a c}
\end{aligned}
$$

Question: A dauphin jumps out of the ocean
and its trajectory is described by $f(x)=-0.5(x-6)^{2}+8$. Find $\underset{\text { Flipper }}{\frac{f(0)}{x}}$ (height as a function of distance) Flipper
An evil dolphin hurter shoots a bullet at George use substitution The bullet's trajectory: $f(x)=0.5 x+1$
How high was the daupin when it got hit by the bullet on the way down?
(1) $y=-0.5(x-6)^{2}+8$
(2) $y=0.5 x^{\prime \prime}+1$

Step (1): Comparison: isolate y's and put right sides equal to eec other

$$
0 \cdot 5 x+1=-0 \cdot 5(x-6)^{2}+8
$$

step (D)! Bring x 's
together' b so you must walnate

$$
\begin{aligned}
& 0.5 x+1=-0.5(x-6)(x-6)+8 \\
& 0.5 x+1=-0.5\left(x^{2}-12 x+36\right)+8 \\
& 0.5 x+1=-0.5 x^{2}+6 x-18+8 \\
& 0.5 x+0.5 x^{2}+1-6 x+10=0
\end{aligned}
$$

$$
\begin{aligned}
& c .=11 \quad D=0.25 \\
& \text { the distanced } \longrightarrow \quad x_{1}=8.37 \\
& \\
& x_{2}=2.63
\end{aligned}
$$

Step (3): Find the y by subbing x into one of the original equations!

$$
\begin{array}{ll}
y=0.5 x+1 & y=0.5(8.37)+1 \\
y=0.5(2.63)+1 \quad \text { or } & y=5.135 \\
y=2.315 &
\end{array} \quad \text { at he danlphin got of }
$$

$$
y=2.315
$$ hit at a height of 5.185 m .

A dog named Duke jumps off a ledge one meter high to catch a frezbee. The dey reaches a max height of $6 \mathrm{~m}, 3 \mathrm{~m}$ away from the ledge. The freebee is at a height of $2 \mathrm{~m}, 2.5 \mathrm{~m}$ away from the ledge and then at a height of 3 H 17.5 m away from the ledge. If the dog follows a parabolic trajectory, and the freebee a (.near trajectory, how high was the dog when he caught the frevbee?

A_{3} is 3 times the Area et

How high is the lowest point of the hamek

The hammock is tread 150 cm above ground

