Review/Recap

MTH 4153 - Geometric Representation

Definitions: Equilateral Triangle-A triangle with three congruent sides and three angles equalling 60 degrees

Isosceles Triangle-A triangle with two congruent sides and angles

Scalene Triangle- A triangle where all sides and angles are different measures

Right Triangle- A triangle where one angle measures 90 degrees

Describing/Determining the Value of Angles

Definitions:Complementary Angles- Two angles that add up to 90 degrees

Congruent Triangles

Definition: Congruent Triangles- Two triangles that are the same, that is, triangles that have the same sides lengths and angles

To determine if triangles are congruent ... draw them and see if one of following principles is applicable

Principle 1:

Principle 2:

Principle 3:

Similar Triangles

Definition: Similar Triangles- Two triangles that are proportionally the same, just smaller or
larger

To determine if triangles are similar ... draw them and see if one of

 following principles is applicable
ex. Similarity Criterion

Principle 4:

Principle 5:

Principle 6:

Determining an Unknown Side Length in Similar Triangles

STEPS

Construct ratios of corresponding sides

Pick 2 ratios with given and wanted info

Cross multiply and solve with opposite operations

Determining an Unknown Side Length in a Right Triangle

nota bene: before using SOH CAH TOA, you must confirm that you have a right triangle, that is, a triangle with 90 degrees,
$\mathrm{SOH} \quad$ and when know/looking for opposite side of an
ex. find x :

20 cm
(opposite side of 30°)

STEPS

sub in values
cross multiply
solve for x with opposite operations
(make sure calculator is in degrees)

Determining an Unknown Side Length in a Right Triangle

nota bene: before using SOH CAH TOA, you must confirm that you have a right triangle, that is, a triangle with 90 degrees,
use when know/looking for adjacent side of an angle as well as hypotenuse

ex. find x :

x
(adjacent side of 60°)

$$
\cos \theta=\frac{a d j}{\text { hypo }}
$$

$$
30 \cos 60=x
$$

$$
15 \mathrm{~cm}=x
$$

STEPS

sub in values
cross multiply
x is isolated, so just evaluate
(make sure calculator is in degrees)

Determining an Unknown Side Length in a Right Triangle

not bene: before using SOH CAH TOA, you must confirm that you have a right triangle, that is, a triangle with 90 degrees,
ex. find x :

(adjacent side of 31)

$$
\begin{aligned}
\tan \theta & =\frac{o p p}{a d_{j}} \\
\frac{\tan 31^{\circ}}{1} & =\frac{15}{x} \\
\frac{x \tan 31^{\circ}}{\tan 31^{\circ}} & =\frac{15}{\tan 31^{\circ}} \\
x & \approx 25 \mathrm{~cm}
\end{aligned}
$$

STEPS

sub in values
cross multiply
solve for x with opposite operations
(make sure calculator is in degrees)

Determining an Unknown Side Length in ANY type of Triangle

nota bene: when your triangle is NOT a right triangle, your only tool is Sine Law

$$
\text { Principle 8: } \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$$
\frac{v_{b}}{\sin B}=\frac{c}{\sin C}=\frac{0}{\sin 0}
$$

$$
\begin{aligned}
\frac{41.42}{\sin 30^{\circ}} & =\frac{x}{\sin 120} \\
\frac{41.42 \sin 120}{\sin 30} & =\frac{x \sin 70}{\sin 30^{\circ}} \\
71.7 \mathrm{~mm} & =x \\
x & =71.7 \mathrm{mw}
\end{aligned}
$$

STEPS

pick 2 ratios with given and wanted info
sub in values
cross multiply
solve for x with opposite operations
(make sure calculator is in degrees)

Determining the Area of a Triangle with Hero's Formula

nota bene: answering a task question involving area requires you to simply understand and apply Hero's Formula for area.

ex. find the area:

$$
\begin{aligned}
p & =\frac{a+b+c}{2} \\
p & =\frac{14+15+10}{2} \\
p & =19.5^{2} \\
A & =\sqrt{p(p-a)(p-12)(p-c)} \\
A & =\sqrt{(19.5(19.5-14)(19.5-15)(19.5-10)} \\
A & \approx 67.7 \text { unit }^{2}
\end{aligned}
$$

Determining the Side Lengths of a Triangle with Distance Formula

nota bene: some area task questions could be made "harder" by only providing you with the coordinates of a triangle's vertices instead of the side lengths. You need only ask yourself then, which tool calculates the side lengths given two points: the Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{l}\right)^{2}}
$$

STEPS
ex. find the area:

$$
\begin{aligned}
& A(3,8), B(7,1) \\
& A\left(x_{1}, y_{1}\right), B\left(x_{1}, y_{2}\right) \\
& d_{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d_{A B}=\sqrt{(7-3)^{2}+(1-8)^{2}} \\
& d_{A B} \approx 8.06 \text { unit }
\end{aligned}
$$

$$
d_{c p}
$$

$$
d_{C n}=
$$

$$
A=
$$

find each distance/side length being careful to label
sub in info and evaluate
find other distances
sub info in area formula and evaluate

Determining the Location Ratio of a Point of Division

nota bene: answering an explicit knowledge question involving Point of Division is also as easy as understanding and applying a formula. However, attention, you must work with the Location Ratio
ex. describe point P along line segment $\overline{\mathrm{AB}}$:

STEPS

algebraically convert ratios by keeping same numerator (2=2)
new denominator is the addition of the old numerator and denominator $(2+3=5)$

Determining the Coordinates of a Point of Division

nota bene: order matters in the Point of Division Formula. The first letter written in line segment is point 1, that is, $\left(\underline{x_{1}, y_{1}}\right)$

$$
P=\left(x_{1}+\frac{m}{n}\left(x_{2}-x_{1}\right), y_{1}+\frac{m}{n}\left(y_{2}-y_{1}\right)\right), \text { where } \frac{m}{n} \text { is the location ratio }
$$

ex. find the coordinates of Q that divides line segment $\overline{\mathrm{TS}}$ into a ratio of 2:1

STEPS
find location ratio
determine which is point 1 and label
sub in info into x coordinate formula and evaluate
do the same for y coordinate

La fin!

(You got this!)

