Question 1

Given the following functions:

$$
\begin{aligned}
& f(x)=x^{2}+3 \\
& g(x)=-\sqrt{x+2} \\
& h(x)=\frac{2}{x+1} \\
& i(x)=|x+3|-2
\end{aligned}
$$

Find the following equations:
a) $\quad f \circ g(x)$
b) $\quad g \circ f(x)$
c) $\quad i \circ j(x)$
d) $\quad j \circ i(x)$

Question 2

Using the equations from Question 1, evaluate the following compositions:
a) $g \circ f(3)=$
b) $f \circ g(-1)=$
c) $i \circ j(3)=$
d) $j \circ i(-2)=$

Question 3

Solve the following inequalities algebraically, and give your solution using interval notation.
a) $\quad-0.2|x-200|+400 \geq-150$
b) $\quad 3 \sqrt{x-2}+1<9$
c) $\quad \frac{x^{2}}{5}-\frac{7 x}{10}+2<0,2$

Question 4

Triangle ABC is isosceles. Segment AD is the altitude from A to side BC. AD measures 12 units, and AC measures 13 units. Find the measure of AE if DE is the bisector of angle ADB.

Question 5

Find the missing measure in each of the circles below. Show all your work, and reference the theorem used to calculate the missing measures.
a)

$$
\begin{aligned}
& m \overline{P D}=2,4 \mathrm{~cm} \\
& m \overline{P C}=4 \mathrm{~cm} \\
& m \overline{A C}=7 \mathrm{~cm} \\
& m \overline{B P}=?
\end{aligned}
$$

b)

$$
\begin{aligned}
& m \overline{M Q}=\sqrt{11} \\
& m \overline{P M}=2 \sqrt{14} \\
& m \overline{N Q}=\sqrt{13} \\
& m \overline{N R}=?
\end{aligned}
$$

c)

$$
\begin{aligned}
& m \overline{A D}=12,5 m \\
& m \overline{A B}=37,5 m \\
& m \overline{D C}=?
\end{aligned}
$$

Question 6

In the following figure, AC is a diameter and BE is a bisector. Given the following measures, calculate the measure of the following segments and justify your answer.

$$
\begin{aligned}
\mathrm{mAB} & =5 \mathrm{~mm} \\
\mathrm{mBC} & =12 \mathrm{~mm} \\
\mathrm{mAB} & =\mathrm{mAD}
\end{aligned}
$$

a) $m \overline{O D}$
b) $\quad m \overline{A E}$

Question 7

In triangle $\mathrm{ABC}, \mathrm{BE}$ is a bisector and BD is an altitude. Determine if the following statements are true or false.
a) $\overline{A B} \cdot \overline{E C}=\overline{A E} \cdot \overline{B C}$
b) $\quad \overline{A B}^{2}=\overline{A E} \cdot \overline{A C}$
c) $\overline{A D} \cdot \overline{D C}=\overline{A B} \cdot \overline{B C}$
d) $\overline{B D}^{2}=\overline{A D} \cdot \overline{D C}$

e) $\overline{A B} \cdot \overline{B C}=\overline{B D} \cdot \overline{A C}$

Question 8

During a road test, the a car is accelerated and decelerated regularly following the following function:

$$
v(t)=30-\left|\frac{3 t-120}{4}\right|
$$

Where $v(t)$ represents the speed (in m / s) reached after t seconds. The test lasts exactly one minute. During what interval, in seconds, is the speed of the car greater than or equal to $10 \mathrm{~m} / \mathrm{s}$? Show all your work clearly.

Question 9

Following a power failure, the interior temperature of a house varies according to the following rule:

$$
T(h)=-2 \sqrt{h}+20
$$

Where $T(h)$ represents the interior temperature after h hours in degrees Celsius. What is the minimum length of the power failure for the house to reach freezing $\left(0^{\circ} \mathrm{C}\right)$?

Clearly show all your work.

Question 10

Complete the following proof.
Prove that:
When two chords intersect within a circle, the product of the lengths of the segments of one chord equals the product of the lengths of the segments of the other.

Hypothesis: Given two chords in a circle, AC and BD , intersecting at point P , located within the circle.

Conclusion: $m \overline{\mathrm{PA}} \times m \overline{\mathrm{PC}}=m \overline{\mathrm{~PB}} \times m \overline{\mathrm{PD}}$

Statement	Justification
1. $m \angle A P D=m \angle B P C$	
2. $m \angle P D A=m \angle P C B$	
3. Triangles APD and BPC are similar	
4. Therefore, $\frac{m \overline{P A}}{m P B}=\frac{m \overline{P D}}{m P C}$	
5. Conclusion: $m_{_} \times x m _=m __\times m$	

Question 11

Given a circle with centre O, point B is the point of tangency of segment $A B$. A is situated along the extension of chord CF. CF intersects chord BE at point D. Using the following measures, determine the length of segment DE.

$$
\begin{aligned}
& \overline{A C}=3 \text { unités } \\
& \overline{A B}=6 \text { unités } \\
& \overline{C D}=x \\
& \overline{B D}=4 \text { unités } \\
& \overline{D F}=x-2
\end{aligned}
$$

Question 12

In the following circle, chord PR is perpendicular to radius OS. Show that arc SP is congruent to arc RS.

Statement	Justification
1.	
2.	
3.	
4.	
5.	

Question 13

Below is a representation of Hippocrates' lunules, on the legs of right triangle RST. Calculate the perimeter of these lunules, knowing that the hypotenuse measures 7 cm and one of the acute angles in the triangle is 60°.

Question 14

Given functions f and g, graphed below:

Which of the following graphs represents $(f / g)(x)$?
a)

b)

c)

d)

Question 15

Given functions $j(x)=\log _{3}(2 x-3)$ and $k(x)=\frac{1}{2} x+3$, determine if the following statemtns are true or false. The composition $j \circ k(x)$ is a function.
a) The composition $j \circ k(x)$ and function $j(x)$ are increasing over $x \in \mathfrak{R}^{+}$.
b) The composition $j \circ k(x)$ and function $k(x)$ are negative over $]-\frac{3}{2},-1[$.
c) The composition $j \circ k(x)$ and function $j(x)$ share the same domain.

Question 16

The linear function $f(x)=\frac{x}{4}+7$ intersects a circle at x -values 2 and 8 . The chord that is coincident on this line is located at a distance of 2 units from the centre of the circle. What is the diameter of the circle? Show all your work.

Question 17

Given $f(x)=3 x+4$ and $g(x)=5 x-7$. Function h is defined by:

$$
h(x)=\frac{f(x)}{g(x)} \text { ou } g(x) \neq 0
$$

Determine if the following statements are true or false.
a) $\operatorname{Dom} f=\mathbb{R}$ and $\operatorname{Dom} h=\mathbb{B} \backslash\left\{\frac{3}{5}\right\}$
b) $\quad \operatorname{Ran} f=\mathbb{B}$ and $\operatorname{Ran} h=\mathbb{B} \backslash\left\{-\frac{7}{5}\right\}$
c) $\quad \operatorname{Dom} g=\mathbb{B} \backslash\left\{-\frac{7}{5}\right\}$ and $\operatorname{Dom} h=\mathbb{R}$
d) $\quad \operatorname{Ran} g=\mathbb{B}$ and $\operatorname{Ran} h=\mathbb{B} \backslash\left\{\frac{3}{5}\right\}$

