Point A(2, -13) belongs to an exponential function of the form $f(x) = \pm c^{x} + k$. Knowing that the equation of the asymptote is y = -4, find the equation of the exponential function f.

Question 2

Solve the following equation algebraically.

$$7^{(-8-2x)} = 49^{(3x+4)}$$

Question 3

Solve the following equation algebraically.

 $9^{(x-3)} = 125^{(x+1)}$

Find the inverse of the following function:

$$f(x) = \log_7(x-3)$$

Question 5

Given f, a logarithmic function defined by $f(x) = \log_c b(x-h)$ and whose graph is given below:

Which of the following is TRUE?

A)
$$b > 0$$
, $h < 0$ and $0 < c < 1$ C) $b > 0$, $h < 0$ and $c > 1$ B) $b > 0$, $h > 0$ and $c > 1$ D) $b < 0$, $h < 0$ and $c < 1$

Given the graphs of *f*, an exponential function of the form $f(x) = a(c^{bx}) + k$ and function *f*', obtained from *f* by modifying certain parameters:

In looking at the graphs of these functions, determine among the following choices which combination allows us to transform f to f'.

- A) The sign of *a* changed and *k* increased.
- B) The sign of *a* changed and *k* decreased.
- C) The signs of *a* and *b* changed.
- D) The sign of b changed and k increased.

Question 7

Given the two following graphs and equations:

- a) Determine for which value of the domain f(x) = g(x).
- b) Determine for which values of x $f(x) \le g(x)$.
- c) Do these functions have the same asymptote?
- d) The y-intercept of function f is y=1 and that of g does not have a y-intercept. True of false?

The graph of function f, defined by the equation $f(x) = -\log_2(2-x) - 1$, is given below:

Determine if the statements below are true or false. If they are false, correct the statement.

Statement	True or False	Correction (if necessary)
a) The point $(0, -2)$ belongs to the graph of		
the function.		
b) The equation of the asymptote is $y = -4$		
c) The domain of the function is $-\infty$, 2 [
d) The range of the function is]-4, ∞		

Question 9

Over the next few years, we predict that the price of a house will increase 2% every 2 years.

If V(T) corresponds to the value of a house after t years, what is the equation that represents this situation if the initial value of the house was \$125 000?

Determine the value of the logarithmic expression below using the laws of logs.

$$5 (\log_a a^3)^2 - 2 \log_{1/a} 1 + \log_a a^{-3}$$

Question 11

Simplify the following expression using the laws of logs.

$$\log_5(x^2 + x - 6) - \log_{1/5}5(x^2 - 9) - \log_5(x + 3)^2(x^2 - 5x + 6)$$

Question 12

Solve the following equation algebraically using the laws of logs.

$$\log_2 x + 9 \log_x 2 = 6$$

Among the following statements, correct those that are false.

A)
$$\log_3 x = \frac{1}{\log_x 3}$$

B) $\log_{1/a} b = \log_a \left(\frac{1}{b}\right)$
C) $\ln x \bullet \ln x = \ln x^2$
E) $\log x - \log y = \log (x - y)$

Question 14

In an adult education centre, they noticed that the number of registrations decreases by a factor of 1/20 as compared to the year before. If there were originally 300 people registered;

a) Determine the equation that describes the number of registrants as a function of n, the number of years since the opening of the centre.

b) How many students will the centre lose between the 5th and 10th years it is open if this trend continues? Round to the nearest whole number.

Two brothers, Chris and Tony, each start a home-based business. Their profits approximate a logarithmic function:

	$f(x) = 2 \log x + 3$	for Chris
and	$g(x) = 5 \log x$	for Tony

Where x represents the number of years since they started and f(x) and g(x) represent the profit after x years.

a) After how many years will Tony start making a profit?

b) After how many years will their profits be equal? How much will they be making at that point?