Question 1

Point $A(2,-13)$ belongs to an exponential function of the form $f(x)= \pm c^{x}+k$. Knowing that the equation of the asymptote is $y=-4$, find the equation of the exponential function f.

Question 2

Solve the following equation algebraically.

$$
7^{(-8-2 x)}=49^{(3 x+4)}
$$

Question 3

Solve the following equation algebraically.

$$
9^{(x-3)}=125^{(x+1)}
$$

Question 4

Find the inverse of the following function:

$$
f(x)=\log _{7}(x-3)
$$

Question 5

Given f , a logarithmic function defined by $\mathrm{f}(\mathrm{x})=\log _{\mathrm{c}} \mathrm{b}(\mathrm{x}-\mathrm{h})$ and whose graph is given below:

Which of the following is TRUE?
A) b >0, h <0 and $0<\mathrm{c}<1$
B) b >0, h >0 and c >1
C) b >0, h <0 and c >1
D) b <0, h <0 and c <1

Question 6

Given the graphs of f, an exponential function of the form $f(x)=a\left(c^{b x}\right)+k$ and function f ', obtained from f by modifying certain parameters:

In looking at the graphs of these functions, determine among the following choices which combination allows us to transform f to f^{\prime}.
A) The sign of a changed and k increased.
B) The sign of a changed and k decreased.
C) The signs of a and b changed.
D) The sign of b changed and k increased.

Question 7

Given the two following graphs and equations:

$$
\begin{aligned}
& f(x)=\log _{2}(x+2) \\
& g(x)=\log _{2} x+2
\end{aligned}
$$

a) Determine for which value of the domain $f(x)=g(x)$.
b) Determine for which values of $\mathrm{xf}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$.
c) Do these functions have the same asymptote?
d) The y-intercept of function f is $y=1$ and that of g does not have a y-intercept. True of false?

Question 8

The graph of function f, defined by the equation $f(x)=-\log _{2}(2-x)-1$, is given below:

Determine if the statements below are true or false. If they are false, correct the statement.

Statement	True or False	Correction (if necessary)
a) The point $(0,-2)$ belongs to the graph of the function.		
b) The equation of the asymptote is $y=-4$		
c) The domain of the function is $-\infty, 2[$		
d) The range of the function is $]-4, \infty$		

Question 9

Over the next few years, we predict that the price of a house will increase 2% every 2 years.

If $\mathrm{V}(\mathrm{T})$ corresponds to the value of a house after t years, what is the equation that represents this situation if the initial value of the house was $\$ 125000$?

Question 10

Determine the value of the logarithmic expression below using the laws of logs.

$$
5\left(\log _{\mathrm{a}} \mathrm{a}^{3}\right)^{2}-2 \log _{1 / \mathrm{a}} 1+\log _{\mathrm{a}} \mathrm{a}^{-3}
$$

Question 11

Simplify the following expression using the laws of logs.

$$
\log _{5}\left(x^{2}+x-6\right)-\log _{1 / 5} 5\left(x^{2}-9\right)-\log _{5}(x+3)^{2}\left(x^{2}-5 x+6\right)
$$

Question 12

Solve the following equation algebraically using the laws of logs.

$$
\log _{2} x+9 \log _{x} 2=6
$$

Question 13

Among the following statements, correct those that are false.
A) $\log _{3} x=\frac{1}{\log _{x} 3}$
B) $\log _{1 / a} b=\log _{a}\left(\frac{1}{b}\right)$
C) $\ln x \bullet \ln x=\ln x^{2}$
E) $\log x-\log y=\log (x-y)$

Question 14

In an adult education centre, they noticed that the number of registrations decreases by a factor of $1 / 20$ as compared to the year before. If there were originally 300 people registered;
a) Determine the equation that describes the number of registrants as a function of n, the number of years since the opening of the centre.
b) How many students will the centre lose between the $5^{\text {th }}$ and $10^{\text {th }}$ years it is open if this trend continues? Round to the nearest whole number.

Question 15

Two brothers, Chris and Tony, each start a home-based business. Their profits approximate a logarithmic function:

$$
\begin{array}{ll}
& f(x)=2 \log x+3
\end{array} \quad \text { for Chris } \quad \text { for Tony }
$$

Where x represents the number of years since they started and $f(x)$ and $g(x)$ represent the profit after x years.
a) After how many years will Tony start making a profit?
b) After how many years will their profits be equal? How much will they be making at that point?

