QUESTIONNAIRE PRETEST A

MAT5105

Questionnaire

Prétest MAT5105

Question 1

Graph the following inequality:

$$
x^{2}-6 x+y^{2}-2 y+1 \leq 0
$$

Clearly show the coordinates of the centre, and draw a radius indicating its length.

Question 2

Give the general form of the equation for the following circle.

Question 3

What is the equation of the line tangent to the circle $(x-1)^{2}+(y-2)^{2}=5$ at point $(2,0)$? Clearly show all your work.

Question 4

Graph the following parabola:

$$
(y-3)^{2} \leq-8\left(x+\frac{1}{2}\right)
$$

Indicate the coordinates of the vertex, the focus as well as the equations of the axis of symmetry and the directrix.

Question 5

Find the equation in standard form of the following parabola:

Question 6

Graph the following inequality:

$$
\frac{y^{2}}{36}-\frac{x^{2}}{16} \leq 1
$$

Give the coordinates of the vertices, the foci, and graph the asymptotes.

Question 7

Give the domain and range of the following relation in interval notation.

Question 8

Determine the equation or inequality that represents each of the following relations. Give the answer in standard form.
a)

b)

Question 9

Give the general form of the equation of a circle centred at $\left(\frac{-1}{2}, \frac{3}{4}\right)$ with a radius of 4 units.

Question 10

Determine the equation of the parabola in the graph below. The centre of the circle is $(2,3)$ and its radius is 2 units. The x-value of the vertex of the parabola is 2 , and the x values of the points of intersection are 1 and 3 .

Question 11

Cosmos' sign is in the shape of an ellipse. It measures 4 m wide and 2 m tall. The owner wants to place a mounting bracket above each O in the sign. Knowing that the sign is 1.6 m high at that point, calculate the distance between the two brackets.

Question 12

Christian needs to hit his approach shot onto the green which is elevated 2 m . To do this, he must hit his ball 1m over a tree 9 m tall. How far will his ball travel, knowing that he is 16 m from the tree and that his ball will travel in a parabolic trajectory?

