Question 1

A car travels at a constant speed of $110 \mathrm{Km} /$ hour between Montreal and Toronto. Determine the independent variable for this functional situation.

Answer: \qquad

Question 2

A function is described by the following rule:

$$
f(x)=\frac{7 x}{2}-5
$$

a) Determine over which interval the function is negative.

Answer: \qquad
b) Determine the rate of change of this function.

Answer: \qquad

Question 3

Use set-builder notation to define the relation illustrated below.

Answer: \qquad

Question 4

The graph below represents situation $f(x)$. Determine the following characteristics of this function.
a) Domain: \qquad
b) Range: \qquad
c) An interval over which the function is both increasing and negative:
d) $f(-2)=$
e) The maximum of $f(x)$: \qquad

Question 5

A function is described by the following rule:

$$
f(x)=2 x^{2}-3
$$

a) Determine the interval over which this function is positive.

Answer: \qquad
b) Determine the interval over which this function is increasing.

Answer: \qquad

Question 6

Given the following sets:

$$
A=\{x \in R \mid x \leq 3\} \quad B=\{x \in R \mid-2 \leq x \leq 5\}
$$

Perform the following set operations: $(A \bigcap B)^{\prime}$

Graph the detailed solution below.

Give your answer in interval notation: \qquad

Question 7

Given the following intervals:
$A=[2,7]$
$B=]-4,4]$
$C=[0,8]$
Perform the following set operations: $(B \cap C)^{\prime} \backslash A$
Graph the detailed solution below:

Give your answer in set-builder notation: \qquad

Question 8

Graph the following relation in a Cartesian plane:

$$
R=\{(x, y) \in R \times R \mid 3 x-2 y+5>0\}
$$

Determine the domain and range.
\qquad Range = \qquad

Question 9
While playing no-limit Texas Hold'em poker, you are down to $30 \$$ in chips. There are $15000 \$$ of chips in play. In order to win, you will have to double your chips several times in a row.
a) Complete the following table of values:

x (Number of Double-ups)	0	1	2	3	4	5	6	7
$f(x)$ (Chip total)	$30 \$$	$60 \$$						

b) Graph this functional situation.

c) Is the function increasing or decreasing?

Answer: \qquad
Explain your answer: \qquad
d) What is the range of this function?

Answer: \qquad

Question 10

Six representations are given below.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{13}{*}{A

$f(x)=2 x-3$} \& \multicolumn{2}{|l|}{B} \& \multicolumn{2}{|l|}{C}

\hline \& \& \& x \& h(x)

\hline \& \& \& -5 \& 22

\hline \& \& \& -4 \& 13

\hline \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{$g(x)=$ The image of an}} \& -3 \& 6

\hline \& \& \& -2 \& 1

\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{element obtained by subtracting 3 from twice}} \& -1 \& -2

\hline \& \& \& 0 \& -3

\hline \& \multicolumn{2}{|l|}{this element.} \& 1 \& -2

\hline \& \& \& 2 \& 1

\hline \& \& \& 3 \& 6

\hline \& \& \& 4 \& 13

\hline \& \& \& 5 \& 22

\hline D \& \multicolumn{2}{|l|}{E} \& \multicolumn{2}{|l|}{F}

\hline \multirow{12}{*}{$i(x)=x^{2}-3$} \& \& j(x) \& \&

\hline \& -5 \& -13 \& \&

\hline \& -4 \& -11 \& \checkmark \& -

\hline \& -3 \& -9 \& ∇ \& -

\hline \& -2 \& -7 \& \% \& -

\hline \& -1 \& -5 \& , \& \square

\hline \& 0 \& -3 \& \cdots \&

\hline \& 1 \& -1 \& \&

\hline \& 2 \& 1 \& \&

\hline \& 3 \& 3 \& \&

\hline \& 4 \& 5 \& - \& 1

\hline \& 5 \& 7 \& \&

\hline
\end{tabular}

Three of these representations correspond to the same function \mathbf{f}_{1} and two of them correspond to another function \mathbf{f}_{2}.

Indicate which representations correspond to each function,
f_{1} : \qquad
f_{2} : \qquad

Question 11

The following graph represents functional situation f .

Indicate whether each of the following statements is true or false.
a) The function has a minimum and two maximums.
b) The domain is] -7, 7 [
c) The function has no axis of symmetry.
d) The y-intercept is $(0,4)$

Question 12

Function \boldsymbol{f} has all of the following characteristics:

- It has a minimum.
- It has no zeroes.
- It is increasing over its entire domain.

Which of the following graphs could represent function \boldsymbol{f} ?
A.

C.

Answer: \qquad

Question 13

An accounting firm decides to compare the operating costs of three paper producing companies that are their clients. The graphs below represent each company's costs per week:

Which company will have the highest operating costs after 26 weeks?
Clearly show all your work.

Question 14

During a cricket match, a batsman hits a ball that reaches a maximum height of 20 yards at the edge of the circle (37 yards away from him). If the ball was initially hit at a height of 1.5 yards, will it make the boundary (86 yards away from him) and score him 6 runs?

Clearly show all your work.

Question 15

Two model rocket enthusiasts, George and Henry, have figured out that the equations that will represent their rocket's altitude in meters are:
$G(t)=-t^{2}+30 t$
$H(t)=-t^{2}+36 t-100$
where t represents the time in seconds after launch.
Which rocket reached the highest altitude? Clearly show all your work.

