Question 1
Perform the following operation by applying the laws of exponents. Make sure your answer contains only positive exponents. Show all steps to the solution.

$$
\begin{aligned}
& \left(16 a^{2} b^{-\frac{5}{3}}\right)^{2} \div\left(4 b^{2} a^{2}\right)^{-\frac{2}{3}} \\
= & 1 b^{2}\left(a^{2}\right)^{2}\left(b^{-3}\right)^{2} \div\left(4^{-\frac{2}{3}}\left(b^{2}\right)^{-\frac{2}{3}}\left(a^{3}\right)^{-\frac{2}{3}}\right) \\
= & \left(2^{4}\right)^{2} a^{4} b^{-6} \div\left(2^{2}\right)^{-\frac{2}{3}} b^{-\frac{4}{3}} a^{-2} \\
= & 2^{8} a^{4} b^{-6} \div 2^{-\frac{4}{3}} b^{-\frac{4}{3}} a^{-2} \\
= & 2^{8-\left(-\frac{4}{3}\right)} a^{4-(-2)} a^{-6-\left(-\frac{4}{3}\right)} \\
= & 2^{\frac{28}{3}} a^{6} b^{-\frac{14}{3}}=\frac{2^{\frac{28}{3}} a^{6}}{b^{\frac{14}{3}}}
\end{aligned}
$$

Question 2
Perform the following operation by applying the laws of exponents. Make sure your answer contains only positive exponents. Show all steps to the solution.

$$
\begin{aligned}
& \left(m^{-3} n^{4} o^{2}\right)^{\frac{3}{4}} \times\left(m^{2} n^{-2} o^{-4}\right)^{-1} \\
= & \left(n^{4}\right)^{\frac{3}{4}}\left(0^{2}\right)^{\frac{3}{4}} \times\left(m^{2}\right)^{-1}\left(n^{-2}\right)^{-1}\left(0^{-4}\right)^{-1} \\
= & m^{\frac{-9}{4}} n^{3} 0^{\frac{3}{2}} \times m^{-2} n^{2} 0^{4} \\
= & m^{\frac{-9}{4}+(-2)} 3+20^{\frac{3}{2}+4} \\
= & m^{\frac{-17}{4}} n^{5} 0^{\frac{11}{2}}=\frac{n^{5} 0^{\frac{11}{2}}}{m^{\frac{17}{4}}}
\end{aligned}
$$

Question 3
Perform the following operation by applying the laws of exponents. Make sure your answer contains only positive exponents. Show all steps to the solution.

$$
\begin{aligned}
=\frac{x^{3}}{2^{2}} \times\left(\frac{2^{4}}{x}\right)^{-2} \\
=\frac{x^{3}}{2^{2}} \times\left(\frac{x^{2}}{2^{4}}\right) \times\left(\frac{16}{x}\right)^{-2} \\
2^{2} \\
2^{2}
\end{aligned} \frac{x^{3}}{2^{2}}\left(2^{4}\right)^{2}=\frac{x^{3} \rightarrow \frac{x^{2}}{2^{2}} \rightarrow 2^{8}}{}=\frac{\left(x^{3}\right)\left(x^{2}\right)}{\left(2^{2}\right)\left(2^{8}\right)} .
$$

Question 4

Perform the following operation by using scientific notation and the laws of exponents. Express your answer using scientific notation. Show all steps to the solution.

$$
\begin{aligned}
& 0.008 \\
&=8 \times 10^{-3}=\frac{6.2 \times 10^{6}}{8 \times 10^{-3}} \\
&=\frac{6.2 \times 10^{6-(-3)}}{8} \\
&=0.775 \times 10^{9} \\
&=7.75 \times 10^{-1} \times 10^{9}-1+9 \\
&=7.75 \times 10^{8} \\
&=7.75 \times 10^{8}
\end{aligned}
$$

Question 5
Simplify the following expression. Make sure your answer contains only positive exponents. Show all the steps in the solution.

$$
\begin{aligned}
& =\left(\frac{x^{3-(-2)} y^{5-7} z^{-2-1}}{27}\right)^{\left.-\frac{x^{3} y^{5} z^{-2}}{27 x^{-2} y^{7}}\right)^{\frac{3}{2}}} \\
& =\left(\frac{x^{5} y^{-2^{2}} 2^{-3}}{27^{\frac{-3}{2}}}\right)^{-\frac{3}{2}}=\frac{\left(x^{5}\right)^{\frac{3}{2}}\left(y^{-2}\right)^{-\frac{3}{2}}\left(2^{-3}\right)^{-\frac{3}{2}}}{27^{-\frac{3}{2}}}=\left(\frac{x^{\frac{-15}{2}} y^{3} z^{\frac{9}{2}}}{27^{-\frac{3}{2}}}\right) \\
& \\
& =\frac{27^{\frac{3}{2}} y^{3} z^{\frac{9}{2}}}{x^{\frac{15}{2}}}
\end{aligned}
$$

Question 6
Determine if the following two expressions are equivalent by applying the laws of exponents. Show all steps to your solution.

$$
\begin{aligned}
& \left(\frac{16}{125}\right)^{-3} \times\left(\frac{25}{8}\right)^{2} \times\left(\frac{5}{2}\right)^{4} \text { and }\left(\frac{625}{64}\right)^{-1} \times\left(\frac{256}{625}\right)^{-\frac{1}{4}} \times\left(\frac{2}{5}\right)^{10} \\
& =\left(\frac{25}{16}\right)^{3} \times\left(\frac{25}{8}\right)^{2} \times\left(\frac{5}{2}\right)^{4} \\
& \left.=\left(\frac{5^{3}}{2^{4}}\right)^{3} \times\left(\frac{5^{2}}{2^{3}}\right)^{2} \times\left(\frac{5}{2}\right)^{4}\right) \\
& =\frac{\left(5^{3}\right)^{3}}{\left(2^{4}\right)^{3}} \times \frac{\left(5^{2}\right)^{2}}{\left(2^{3}\right)^{2}} \times \frac{5^{4}}{2^{4}} \\
& =\frac{5^{9}}{2^{12}} \times \frac{5^{4}}{2^{6}} \times \frac{5^{4}}{2^{4}}=\frac{5^{9+4+4}}{2^{12+6+4}} \\
& =\frac{5^{17}}{2^{22}} \\
& \text { Not Equivalent! }
\end{aligned}
$$

Question 7

$$
x=-4
$$

If $x$ is an even negative integer, determine if the following statements are true or false by replacing the variable with the number of your choice.


Question 8
Among the following algebraic expressions, circle those that are equivalent. In the space provided under each expression, show how you arrived at your conclusion.


Question 9
Perform the operations indicated in the expression below and simplify your answer. Show all steps in the solution.

$$
\begin{aligned}
& (3 \sqrt{8}+4) \cdot(-5 \sqrt{32}-2) \\
= & 3 \sqrt{8}(-5 \sqrt{32})+3 \sqrt{8}(-2)+4(-5 \sqrt{32})+4(-2) \\
= & -15 \sqrt{256}-6 \sqrt{8}-20 \sqrt{32}-8 \\
= & -15(16)-6 \sqrt{492}-20 \sqrt{16 \times \sqrt{2}}-8 \\
= & -240-6(2) \sqrt{2}-20(4) \sqrt{2}-8 \\
= & -248-12 \sqrt{2}-80 \sqrt{2} \\
= & -248-92 \sqrt{2}
\end{aligned}
$$

Question 10
Perform the operations indicated in the expression below and simplify your answer. Show all steps in the solution.

$$
\begin{aligned}
& \qquad \sqrt{72}-\sqrt{576}+\sqrt{512}=24 \\
& 72: 1,2,3,4,6,8,9,12,18,24 \sqrt{36}, 72 \\
& \sqrt{72}=\sqrt{36 \sqrt{2}}=6 \sqrt{2} \\
& 512: 1,24+16 \sqrt{2} \\
& \sqrt{512}=\sqrt{255 \times \times 2}=16 \sqrt{2}
\end{aligned}
$$

Question 11
Perform the operations indicated in the following expression. Simplify your answer and rationalize the denominator, if necessary. Show all steps in the solution.

$$
\begin{aligned}
& =\frac{4 \sqrt{2}(5 \sqrt{2})+4 \sqrt{2}(-4)}{5 \sqrt{2}(5 \sqrt{2})+5 \sqrt{2}(-4)+4(5 \sqrt{2})+4(-4)} \frac{4 \sqrt{2}}{5 \sqrt{2}+4} \times \frac{(5 \sqrt{2}-4)}{(5 \sqrt{2}-4)} \\
& =\frac{20 \sqrt{4}-16 \sqrt{2}}{25 \sqrt{4}-80 \sqrt{2}+80 \sqrt{2}-16} \\
& =\frac{20(2)-16 \sqrt{2}}{25(2)-16}=\frac{40-16 \sqrt{2}}{50-16}=\frac{40-16 \sqrt{2}}{34} \div 2=\frac{20-8 \sqrt{2}}{17}
\end{aligned}
$$

Question 12
Perform the operations indicated in the following expression. Simplify your answer and rationalize the denominator, if necessary. Show all steps in the solution.

$$
\begin{aligned}
& =\frac{-2}{1} \times \sqrt{\frac{96}{27} \div 3} \div\left(\frac{-2 \sqrt{96}}{1 \sqrt{27}}\right) \\
& =\frac{-2}{1} \times \sqrt{\frac{32}{9}} \\
& =\frac{-2 \sqrt{32}}{\sqrt{9}}=\frac{-2 \sqrt{16 \times 72}}{3} \\
& =\frac{-2(4) \sqrt{2}}{3}=\frac{-8 \sqrt{2}}{3}
\end{aligned}
$$

Question 13
Determine if the two following expressions are equivalent. Show all the steps in

$$
\begin{aligned}
& \text { the solution. } \\
& \overbrace{(5-3 \sqrt{3}) \cdot(3 \sqrt{3}+5)} \text { and } 4 \sqrt{9}-2 \sqrt{49} \\
& =5(3 \sqrt{3})+5(5)+(-3 \sqrt{3})(3 \sqrt{3}) \\
& +(-3 \sqrt{3})(5) \\
& =75 \sqrt{3}+25-9 \sqrt{9}-15 \sqrt{3} \\
& =4(3)-2(7) \\
& =12-14 \\
& =-2 \\
& =25-9(3) \\
& =25-27 \\
& =-2
\end{aligned}
$$

## Question 14

Determine if the two following expressions are equivalent. Show all the steps in the solution.

$$
\begin{aligned}
& \begin{aligned}
& \text { and }\left(\frac{1}{x^{2}}\right)^{-2} \sqrt[4]{x^{4}} \\
&=\left(\frac{x^{2}}{1}\right)^{2} \cdot x^{\frac{4}{4}} \\
&=\frac{\left(x^{2}\right)^{2}}{1^{2}} \cdot x^{1} \\
&=x^{4} \cdot x^{1} \\
&=x^{4+1}=x^{5} \\
& y=5
\end{aligned}
\end{aligned}
$$

