Question 1

Perform the following operation by applying the laws of exponents. Make sure your answer contains only positive exponents. Show all steps to the solution.

$$
\left(16 a^{2} b^{-3}\right)^{2} \div\left(4 b^{2} a^{3}\right)^{-\frac{2}{3}}
$$

Question 2

Perform the following operation by applying the laws of exponents. Make sure your answer contains only positive exponents. Show all steps to the solution.

$$
\left(m^{-3} n^{4} o^{2}\right)^{\frac{3}{4}} \times\left(m^{2} n^{-2} o^{-4}\right)^{-1}
$$

Question 3

Perform the following operation by applying the laws of exponents. Make sure your answer contains only positive exponents. Show all steps to the solution.

$$
\left(\frac{x^{3}}{4}\right) \times\left(\frac{16}{x}\right)^{-2}
$$

Question 4

Perform the following operation by using scientific notation and the laws of exponents. Express your answer using scientific notation. Show all steps to the solution.

$$
\left(\frac{6.2 \times 10^{6}}{0.008}\right)
$$

Question 5

Simplify the following expression. Make sure your answer contains only positive exponents. Show all the steps in the solution.

$$
\left(\frac{x^{3} y^{5} z^{-2}}{27 x^{-2} y^{7} z}\right)^{-\frac{3}{2}}
$$

Question 6

Determine if the following two expressions are equivalent by applying the laws of exponents. Show all steps to your solution.

$$
\left(\frac{16}{125}\right)^{-3} \times\left(\frac{25}{8}\right)^{2} \times\left(\frac{5}{2}\right)^{4} \text { and }\left(\frac{625}{64}\right)^{-1} \times\left(\frac{256}{625}\right)^{-\frac{1}{4}} \times\left(\frac{2}{5}\right)^{10}
$$

Question 7

If x is an even negative integer, determine if the following statements are true or false by replacing the variable with the number of your choice.

$2^{x} \geq 1$	$\left(-\frac{1}{2}\right)^{x} \leq 4$
a)	
$\left(\frac{1}{2}\right)^{-x} \leq \frac{1}{2}$	$(-2)^{x} \leq 1$

Question 8

Among the following algebraic expressions, circle those that are equivalent. In the space provided under each expression, show how you arrived at your conclusion.

$-a^{2} b^{6}$	$\left(-a b^{2}\right)^{3}$	$-\frac{b^{3}}{\left(a^{-2} b^{-9}\right)}$
$-\left(a^{4} b^{12}\right)^{\frac{1}{4}}$		

Question 9

Perform the operations indicated in the expression below and simplify your answer. Show all steps in the solution.

$$
(3 \sqrt{8}+4) \cdot(-5 \sqrt{32}-2)
$$

Question 10

Perform the operations indicated in the expression below and simplify your answer. Show all steps in the solution.

$$
\sqrt{72}-\sqrt{576}+\sqrt{512}
$$

Question 11

Perform the operations indicated in the following expression. Simplify your answer and rationalize the denominator, if necessary. Show all steps in the solution.

$$
\frac{4 \sqrt{2}}{5 \sqrt{2}+4}
$$

Question 12

Perform the operations indicated in the following expression. Simplify your answer and rationalize the denominator, if necessary. Show all steps in the solution.

$$
\left(\frac{-2 \sqrt{96}}{\sqrt{27}}\right)
$$

Question 13

Determine if the two following expressions are equivalent. Show all the steps in the solution.

$$
(5-3 \sqrt{3}) \cdot(3 \sqrt{3}+5) \text { and } 4 \sqrt{9}-2 \sqrt{49}
$$

Question 14

Determine if the two following expressions are equivalent. Show all the steps in the solution.

$$
x^{\frac{5}{2}} \sqrt{x^{5}} \quad \text { and } \quad\left(\frac{1}{x^{2}}\right)^{-2} \sqrt[4]{x^{4}}
$$

