Unit 5: Inverse of a Real Function
\longrightarrow a reflection of the

$f(x)$ - function
$f^{-1}(x)$ - inverse of a function

Invers: replace $x \bar{\sim}$ y and $y=x$

For f^{-1}
$\begin{aligned} & \text { Same thing } \\ & \text { for source }\end{aligned} D_{\text {om }} f^{-1}=$ Range f
$\left.\begin{array}{l}\text { for source } \\ \text { and target }\end{array}\right\}$

$$
\text { set } \quad \text { Range } f^{-1}=\operatorname{Domain} f
$$

$$
\begin{array}{r}
\frac{F_{x} 1}{p 5 \cdot 2} f=\{(1,2),(2,3),(3,4),(4,5)\} \\
\quad \text { Dom } F=\{1,2,3,4\} \\
\quad \text { Range } f=\{2,3,4,5\} \\
f^{-1}=\{ \\
(2,1),(3,2),(4,3),(5,4)\} \\
\\
\operatorname{Dom} F^{-1}=\left\{2,3,4,5^{\prime}\right\}=\text { Range } F \\
\\
\text { Range } F^{-1}=\{1,2,3,4\}=\text { Dom } f
\end{array}
$$

$\frac{E \times 2}{P 5.5}$ Find the inverse of

$$
\begin{aligned}
f(x) & =x^{2}-4 \\
y & =x^{2}-4 \\
v(0,-4) \quad y & =a(b(x-h))^{2}+k
\end{aligned}
$$

To find the inverse of a function algebraical
(1) Switch x and y in the equation
(2) Solve for y (isolate)

Dom $f^{-1}[-4,00$
ex: $y=x^{2}-4$

$$
x=y^{2}-4
$$

Range $F^{-1}: \mathbb{R}$

Find the inverse of

$$
\left.\begin{array}{rl}
f(x)=\{(x, y) & \in[0,10] \times \mathbb{R} \mid f(x)=4 x-5] \\
y & =4 x-5 \\
x & =4 y-5 \\
\frac{x+5}{4} & =\frac{4 y}{4} \\
y & =\frac{1}{4} x+\frac{5}{4} \\
f^{-1}:\left\{(x, y) \in \mathbb{R} \times\left[0,10^{0}\right] \left\lvert\, f^{-1}(x)=\frac{1}{4} x+\frac{5}{4}\right.\right\}
\end{array}\right]
$$

Ex find the inverse of

$$
\begin{aligned}
f(x) & =2 \sqrt{x-2}+4 \\
f(x) & =a \sqrt{b(x-h)}+k \\
y & =2 \sqrt{x-2}+4 \\
x & =2 \sqrt{y-2}+4 \\
\frac{x-4}{2} & =\frac{2 \sqrt{y-2}}{2} \\
(\sqrt{y-2})^{2} & =\left(\frac{x-4}{2}\right)^{2} \\
y & =\left(\frac{x-4}{2}\right)^{2}+2 \\
f^{-1}(x)=\left(\frac{x-4}{2}\right)^{2} & +2
\end{aligned}
$$

Dom $f^{-1} \quad[4,00$
Range $F^{-1}[2,00$

Find the inverse:

$$
f:[-4,8] \longrightarrow \mathbb{F}
$$

$$
y=\frac{a}{b(x-k)}+k
$$

$$
\left.\begin{array}{l}
x=h \\
y=k
\end{array}\right\} \operatorname{csy}
$$

$$
y=\frac{3}{x-1}+3
$$

$$
x=\frac{3}{y-1}+3
$$

$$
\begin{aligned}
& \frac{x-3}{y-1} \frac{3}{y-1} \\
& \frac{(y-1)(x /-3)}{(x-\beta)}=\frac{3}{x-3} \\
& (y-1)=\frac{3}{x-3} \\
& y=\frac{3}{x-3}+1 \\
& x=3 \\
& y=1 \\
& f^{-1} \mathbb{R} \longrightarrow[-4,8] \\
& x \longrightarrow \frac{3}{x-3}+1
\end{aligned}
$$

